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Abstract

The Log-Normal distribution is found in many places biological systems, income
distributions, and even bitcoin transactions. This paper explores some basic properties of
the Log-Normal distribution and provide some results of conducting analysis within this
dynamical framework.

Introduction

Log-Normal distributions are found in many different fields of study: economics,
metrology, biology, neuroscience, and engineering. While we are able to gain
considerable understanding from fitting our observations to these distributions, we tend to
miss what happens when parameters within these distributions change. This paper
explores the consequences of examining these dynamical changes within these systems.

This paper is composed of three parts. The first part is a generic analysis—
derivation of the dynamical relationships. The second part examines the relationship
between the Log-Normal distribution and the Lorenz curve. The final part is an
application of the Log-Normal distribution in policy analysis.

While the conclusions are profound, they are only derived properties from the Log-
Normal density function. The findings are a consequence of the distribution, nothing
more. The approach taken here was inspired by the work of J. Willard Gibbs and of
Edwin T. Jaynes.[1, 2] Without their elementary insights, any understanding here would
not be possible.

Part 1

We start with the univariate Log-Normal distribution,
1 (in[x]-¢)*
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with an information entropy,
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and,
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Recall,
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where N is the number of degrees of freedom of the system.[3] Let ¢, be a
positive Real constant of proportionality such that,

Var| x 1
[2 ] = Q)
<x> N
Now, define a new variable,
1
k=1+ (6)
o N

that is roughly inversely proportional to N over the domain k €(0,). Equation
(6) leaves us with the relationship,

o’ =In[k] (7

Substituting (3) and (7) into (2) results in,
1
2
s = %ln[Zﬂe] +1In (@j (x) (8)

The information entropy of a Log-Normal distribution is a separable function of
the size of the system, k , and its expectation, {x). Because of this logical independence

the size and expectation are additive quantities of entropy. Figure 1 plots & ’s
contribution to entropy (a) and ds/dk (b). We see that the system’s entropy is

maximized when k=e.
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Figure 1 k’s contribution to entropy (a) and ds/dk (b).

We define a new variable,

z=0%" )
and rearrange (8) in terms of(x),
(x)= ! e (10)
\2mez

Ay (an
ds
o{x) _ T
DT (12)

This results in a total differential of,
(13)

d(x) = (x)ds — % dz

The plotting the scale parameter z againstc,N , Figure 2 shows min[z]=1/e
when o =1. This corresponds to the point of maximum entropy of the distribution for

any given location (x). We see that z has two regimes. In the first regime, 6> >1, z
increases as ¢,N becomes larger, 6 shrinking. In

the second regime, 6> <1, zo<1/N .

o We now look at a special scenario with an
additional random variable. This special bivariate
case is where there is no covariance of the two
random variables. The random variables are logically
independent. The second constraint is that impact of

o “* the scale parameter of the system differs only by a
2
and

l;/igure %1 R;llationship between constant of proportionality 63 = a’c
an .
¢ “ 0, =b’c’, where a and b €[0,1]. Equations (8) and

(10) become,
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5= %ln[2ﬂ6]+ln[z% <x>a<m>b} (14)

1 b 5
(x)=(2mez) 2 (m) v et (15)
Expanding upon (11) and (12), we have,
20 _ ()

T = ? e (16)
©= % = _é (17)

and,
a2 _, T (18)

Equation (18) becomes the familiar,
A{M)=bNT (19)

We see that for an isentropic process of constant N, that we derive the familiar
polytropic process directly from (15),

<x><m>§ = Const (20)

We identify the adiabatic exponent as,
b
y== 1)
a

The total differential of the system is given by
d{x)=Tds—Ad{m)+udz (22)
Because the system is at statistical equilibrium, we use the Gibbs-Duhem
relationship to determine the relationship between a and b .
zdpu=-sdT +{m)dA (23)

Upon reflection of the definition of z, equation (9), we can have a deeper
understanding of the significance of this relationship. We let 6°> = -W (—z), where

z

ot W is the Lambert W function. Substituting this relationship into (9), we recover
0 [ \\\ the Lambert W function definition:

025] \\\ =W (Z) "

" T When we plot z as a function of ¢ N, figure 3, we see that
e T there are two distinct regions, the first is the W, branch

oof T —— (red). The second is the other real branch of the
005 Lambert W function, W_, (blue).

oo b o e N
0

Figure 3 Plot of Lambert W function . . .
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Figure 4 Scale function's approach to linearity Figure 5 Error in linear model to 1/z function

g approaches i =N + ; for large ¢ N, figure 4, with a rapidly diminishing
k

error, figure 5. The linear model provides a useful approximation for systems of high
dimensionality.

Lorenz Curves

The Log-Normal distribution has important characteristics associated with it when
evaluated using Lorenz curves. First is the Lorenz asymmetry coefficient is 1 for every
Log-Normal distribution. This means that there are not too many small/poor or large/rich
members of the study group. The large and small parts are symmetric in their
contribution to the overall distribution.

When we look at the contribution of the factors to the Lorenz curve, we find that
the shape of the Lorenz curve for a Log-Normal distribution is a function only of ¢.
Correspondingly, we find that by (17) the maximum entropy distribution occurs when
o’ =1. This correlates to a Gini coefficient of 0.521. Any Log-Normal distributed
random variate that has a Gini coefficient other than 0.521 will result in lower entropy. In
the extremes of 6> of 0 and oo, the entropy goes to zero. When o> — oo the density of
the system becomes so low that it possesses no information. When 6> — 0 the system
possesses no free energy it cools to a point where there is no action or motion in the
system because its density is so high. This condition corresponds to a Gini coefficient of
0 and represents perfect “equality”.

When we consider the condition of perfect equality in a dynamical situation we
find that there is no free energy in the system. We can rearrange (22) and apply the
product rule to derive the relationship,[4]

dA=-SdT —Ad(M)+uNdz (25)

Clearly, as z — 0 the free energy of the system disappears. This means that the
system has no available wealth to act, through being either too diffuse or too dense.
Additionally, we find that the wealth of the system becomes maximal when the entropy is
maximized. Returning to equations (6) and (7), we find that the constant ¢, determines

the maximum entropic carrying capacity of the system. In the context of a species
distribution a low ¢, would represent a biome that could support richer species diversity
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like a rain forest. Conversely, a relatively high ¢, would support a smaller population
size, like a desert. Rewriting (6) when k = e, we have

N (26)

Nl =
" el

For this reason, we will refer to ¢, as the systems carrying capacity. The carrying

capacity of the system is not necessarily a fixed constant through time. It can depend on
other variables. Such treatment significantly complicates the mathematical analysis and is
not presented here due to loss of clarity.

We choose to focus on the maximum entropy point of the system for several
reasons: it assumes the least amount of information compared to other hypothesis, it is
the most probable configuration given the information, distributions of lower entropy are
atypical, that they have greater “disorder”, or that they are “smoother”.[5] I do not prefer
to use “disorder” because of the connotations associated with it of a lack of structure.
This is quite the contrary; a system at maximum entropy based on its constraints has a
very clearly defined structure. The entropy is a measure then of how capable the systems
components are “free” to explore the allowed configurations. In this sense, entropy
provides a measure of “freedom” or “liberty”.

Jaynes provides a justification for adopting the principle of maximum entropy in
our analysis through the entropy concentration theorem.[5] For a system to not be at a
configuration of maximal entropy, that system has to be perturbed by some “force” from
that position of maximal entropy. When we identify such perturbations from what our
theory says is maximum entropy, then those instances are where we need to reevaluate
our hypothesis to construct a more effective model that explains the observed entropy.
This method is how we grow our scientific knowledge. Science seeks to only understand
what it can observe. Those ideas that increase our understanding of the world around us
explain our observed entropy the best.

Policy Analysis

By assuming that our observed distribution is at a point of maximum entropy
(where we assume the least), we provide a gauge by which to compare our model to
observation. Turning our attention to examining income inequality. We recall that the
greatest societal wealth occurs when systems entropy is maximized. Forcing the system
away from a point of maximal entropy requires a “work” input, or rather information that
is not included in the endogenous model. There is some exogenous factor that causes the
perturbation from maximum entropy.

A significant perturbation for any society is taxes. Here there are two main types,
transfer and services. It is possible to construct service taxes such that the systems
entropy is not reduced. In this construct, we call this form of taxation isentropic (entropy
remains unchanged). Using a thermodynamic analogy, isentropic taxation is like an
isentropic expansion of a gas under a piston (actual relationship is mathematically
analogous to a chemical process, but it is difficult to convey extracting free energy in a
chemical reaction with a catalyst, here government is the catalyst). These processes
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extract wealth (Free energy in thermo) and convert it into what is hopefully considered to
be useful work.

When we examine transfer/redistributive taxation, the tax code is specifically
tailored to affect the distribution of income. In doing so, the tax code affects the system’s
entropy. If the system was already at a state of maximal entropy for a given average
income, then any redistribution lowers the society’s entropy and destroys wealth.
Progressive taxation, compresses our society destroying entropy (liberty) and free energy
(wealth). This inhibits the overall action that we can achieve. It also induces for lack of a
better word social stress. Here the stress is in the society being pushed away from its
natural state into some entirely arbitrary configuration. It is difficult to envision this as
success as more are made worse off than those being made better off.

Gini indexes — before and after taxes between 1980 and 201 0[6]
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Taxes and social spending in most countries have significant moderating effect on income inequality Gini indices.

Figure 6 Impact of taxation on Gini coeffiicents

Figure 6 taken from Wikipedia’s page on the Gini coefficient and based on OECD
data[6] shows the impact of progressive tax policy. While the OECD data does not show
that income is Log-Normally distributed, examining the Social Security Administration’s
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Average Wage Index from 1990 to 2011, we find that at least US income is Log-
Normally distributed.

The path of making the poor better off and no one worse off is through increasing
the real (not nominal) income of individuals. A collapsing average income in a society is
a definite sign of a contracting economy (directly analogous to cooling, where wealth is
leaving the nation). This is particularly troubling for Japan, which since 2010 has
collapsing income while drastically increasing the money supply.[7, 8] The Japanese
seemingly are doing everything in their power to reduce the entropy of their society. The
collapsing entropy is indicative (unknown direction of causation) of the extremely low
birthrates in Japan. This is consistent with others observations attributing low birth rates
to “exorbitant living costs, elevated stress and diminished confidence. Even after two
decades of deflation, prices in Japan for everything from rent to food to entertainment
remain among the highest in the world. Economic stagnation and changes in labor laws
have restrained wage growth and enabled companies to swap employees into low-paying
part-time jobs with few benefits.”[9] If Japan is to recover, they need to implement
policies that will increase the societal entropy, not reduce it.

Conclusion

When we examine the Log-Normal distribution in closer detail, we find that we
garner valuable information from the results. Perhaps the most important consequence of
all of this exposition is that we cannot avoid the second law of thermodynamics. This is
an iron law, and one that cannot be violated. Stated another way. Good intentions are not
good enough to achieve favorable outcomes.

We can only hope to achieve favorable outcomes if we examine the change in
distribution of the things that we measure. The information content of the distribution,
entropy, and its trend is as important as the average value and more important than any
other metric. As entropy is purely a statistical metric, it exists for anything that we
observe. Thermodynamics is formally a study of how the distribution of particles in phase
space change. It is perhaps the most powerful mathematical framework we have for any
quantitative analysis.

Reflection
“If someone points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations—then so much the worse for Maxwell’s
equations. If it is found to be contradicted by observation—well these experimentalists do
bungle things sometimes. But if your theory is found to be against the second law of

thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.” -Sir Arthur Eddington [10]
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